当前位置: 首页 » 生命奥秘 » 数理研究 » 正文

明品生活网:新研究解决燃料电池电解质难题_质子-电导率-电解质-

放大字体  缩小字体   来源:《科学》  作者:H.B.Song等  版权声明,必须查看=>点击进入



核心提示:中国地质大学(武汉)燃料电池创新研究团队部分成员设计和构造具有最低迁移势垒的超质子高速通道(A、B);获得极其优异的质子电导率,较传统钇稳定二氧化锆电解质材料的电导率提升了约3个数量级(C);实现了先进燃料电池示范,在520摄氏度,输出超过1000毫瓦/平方厘米的功率密度(D)。中国地质大学(武汉)燃料电池创新研究团队首次通过半导体异质界面电子态特性,把质子局域于异质界面,设计和构造具有最低迁移势垒的质子通道,从而助推超质子,获得优异


新研究解决燃料电池电解质难题

 

中国地质大学(武汉)燃料电池创新研究团队部分成员

设计和构造具有最低迁移势垒的超质子高速通道(A、 B);获得极其优异的质子电导率,较传统钇稳定二氧化锆电解质材料的电导率提升了约3个数量级(C);实现了先进燃料电池示范,在520摄氏度,输出超过1000毫瓦/平方厘米的功率密度(D)。

中国地质大学(武汉)燃料电池创新研究团队首次通过半导体异质界面电子态特性,把质子局域于异质界面,设计和构造具有最低迁移势垒的质子通道,从而助推超质子,获得优异的电导率。

7月10日,《科学》刊发学术论文《电场诱导异质界面金属态构建超质子传输》。

燃料电池是继水力发电、热能发电和原子能发电的第四种发电技术。其洁净、高效、无污染特点越来越引起关注。燃料电池技术成为国家能源发展战略的一个重点领域,高离子电导率的电解质开发,是解决目前燃料电池应用的关键。

长期以来,提高电解质离子电导率的方法,是通过低价阳离子取代高价阳离子,如掺杂三价铱离子取代结构的四价锆离子,从而产生氧空位,进而提高了氧离子电导率。但是结构掺杂的方法,并没有有效解决燃料电池电解质面临的百年挑战,很大程度上阻碍了燃料电池的商业化进程。

在传统质子传导材料里,质子需要克服巨大的能垒,通过氧空位跳跃前行。该研究相当于给质子“修建高速公路”,即利用半导体异质界面场诱导金属态,助推超质子实现又快又好地“跑起来”,从而获得优异的电导率。这与传统电解质材料电导率相比,提升了3个数量级,并且实现了先进质子陶瓷燃料电池的示范。

该研究成果为优良质子传输材料和应用,提供了创新思路,为质子限域传输提供了科学方法,为在燃料电池研发应用中插上了翅膀。该成果将促进新一代燃料电池研究和发展,对发展能源新材料和新技术具有重要科学意义和应用价值。(来源:中国科学报 温才妃 胡守庚)

相关论文信息:https://doi.org/10.1126/science.aaz9139

 





 
 


@1999-2020 六维空间网 新国学™ 明品生活™ >  六维空间网 新国学网 版权所有